
CS106B
Winter 2020

Handout 28
March 6, 2020

Assignment 8: Huffman Coding

This assignment is a modified version of one developed by Owen Astrachan of Duke University,
with edits by a number of talented folks including Julie Zelenski, Cynthia Lee, and Marty Stepp.

Your final assignment of the quarter is to write a program that uses Huffman coding to compress and de-
compress files. It pulls together ideas from all over the quarter – recursive exploration, linked structures,
trees, and streaming algorithms. Once you’ve finished coding this one up, you’ll have a fairly impressive
piece of software that’s powered by a bunch of clever algorithms. We hope this is a fitting capstone to
your experience in CS106B!

Due Friday, March 13th at the start of lecture.
You are welcome to work on this assignment in pairs.

☞ No late days may be used ☜

and

☞ no late submissions will be accepted. ☜

Because no late days may be used on this assignment, it’s important to start early and to make slow and
steady progress. Here’s our recommended timetable.

• Aim to complete Milestone One within one day of this assignment going out.

• Aim to complete Milestone Two within three days of this assignment going out.

• Aim to complete Milestone Three within five days of this assignment going out.

• Aim to complete Milestone Four within six days of this assignment going out, leaving a buffer
day to go back and fix any issues that surfaced in this step.

• Bask in the glory of having completed the last assignment of the quarter, and explore Milestone
Five to appreciate the program you’ve just written.

We recommend that you periodically submit your work to Paperless just in case something comes up
and you can’t submit by the deadline. We’ll only grade the last version you submit.

1 / 9

Milestone One: Build the Huffman Tree
In this first milestone, you’ll implement this function:

HuffmanNode* huffmanTreeFor(const string& str);

This function takes as input a piece of text, then builds a Huffman coding tree for that text using the al-
gorithm from class. (It’s the one that makes a priority queue of a bunch of singleton nodes, then repeat -
edly combines nodes together.)

Before you code this up, take a minute to make sure you understand how Huffman coding works.

Edit the file res/ShortAnswers.txt with your answer to the following question:

Q1. Draw the Huffman coding tree that would be produced for the input string "aabbbbccc" by
following the algorithm from class. One specific note: when merging trees together, structure
your tree so that the first node removed from the priority queue becomes the 0 child of the
tree and the second node removed from the priority queue becomes the 1 child of the tree.

Now, back to C++. The result of huffmanTreeFor is a HuffmanNode* object, where HuffmanNode is
defined as follows:

struct HuffmanNode {
 char ch; // Which character is stored here.
 HuffmanNode* zero; // Child tree labeled 0.
 HuffmanNode* one; // Child tree labeled 1.
};

The ch variable here is only meaningful if the HuffmanNode is a leaf node in the tree (do you see why?),
so you should not read or write this variable in a HuffmanNode unless that node is a leaf.

In the course of coding up this part of the assignment, you’ll need to use a priority queue. You built one
of these in Assignment 5, but that HeapPQueue type was specifically designed to work with DataPoint
objects. We’ve provided the "priorityqueue.h" header file, which defines a PriorityQueue<T> tem-
plate that can store objects of any type. Consult the “Stanford C++ Library Documentation” on the
course website for more information about how to use this type. In particular, make sure you know how
to enqueue and dequeue elements and how to determine the priorities of relevant items.

One little nuance that you’ll need to be aware of: the test cases in the starter files we’ve provided all as-
sume that, when you’re running the Huffman tree construction algorithm, the first node you pull out of
the queue will end up as the 0 child of the newly-constructed node, and the second node you pull out of
the queue will end up as the 1 child. Make sure to follow this convention in this assignment.

To summarize, here’s what you need to do:

1. Implement the huffmanTreeFor function in Huffman.cpp.

2. Add at least one custom test case for this function, and test your code thoroughly.

Our test coverage here is not as robust as in the previous assignments. You will need to test your code
thoroughly. A recommendation: write a test case that creates a Huffman tree from a string of your
choosing, then set a breakpoint and run the tests with the debugger on. Using the same techniques from
Assignment 7 that you used to map out and escape the labyrinth, poke around in the debugger and draw
out the trees that you’re producing. Do they match what you expected to find? If so, great! If not, step
through your construction algorithm in the debugger and see what happens.

2 / 9

Some notes on this problem:

• The tree construction algorithm we provided in class assumes that the input string has at least
two different characters in it, and if this isn’t the case, your code should call the error() func-
tion to report an error. (Do you see why the algorithm doesn’t work in these cases?)

• If multiple characters are tied for having the same weight, or if two or more intermediate trees
are tied for having the same weight, you can break ties arbitrarily. Keep in mind that there can
be many equally good Huffman trees for a given string, differing only in how the algorithm
broke ties. As a result, if you’re writing custom test cases, make sure that your tests don’t assume
anything about the specific way that the algorithm breaks ties when they arise.

• You should completely ignore the ch field of HuffmanNode for all nodes except leaves, the same
way that you completely ignored the value field of the LinearProbingHashTable::Slot type
when the isEmpty field was set.

• You should be able to handle strings made of any characters, not just letters, numbers, etc. In
particular, you can’t reserve certain char values to mean “this is an internal node.” Many files on
disk – especially files containing non-text data – make use of all possible characters.

3 / 9

Milestone Two: Implement Text Encoding and Decoding
Your next task is to write a pair of functions that are inverses of one another:

string decodeText(Queue<Bit>& bits, HuffmanNode* tree);
Queue<Bit> encodeText(const string& str, HuffmanNode* tree);

This decodeText function takes as input a Queue<Bit> representing some data that’s been compressed
with Huffman coding, along with a pointer to the encoding tree that was used, then returns the decom-
pressed string. The encodeText function takes as input a string and a Huffman coding tree, then returns
a Queue<Bit> loaded with the bits formed by running the Huffman coding algorithm on that string.

Before you code this up, though, take a minute to make sure you know how to run the algorithms with a
pencil and paper.

Edit the file res/ShortAnswers.txt with your answer to the following questions.

Q2. Decode the string of bits 1100010011000100 using the Huffman tree shown below:

Q3. Encode the string ABRACADABRA using the Huffman tree from Q2.

Returning to C++ Land, you’ll notice that these functions make reference to a Bit type, which repre-
sents a single bit. The Bit type works like a regular integer, though note that if you try assigning a value
to a bit that isn’t a 0 or a 1 it’ll report an error. For example:

Bit b = 0;
queue.enqueue(0);
if (queue.dequeue() == 1) { … }

You can’t perform arithmetic on Bits. But that’s a good thing, because there’s no reason you should
need to do that in this assignment. 😃

To summarize, here’s what you need to do:

1. Add a custom test case for the decodeText function in Huffman.cpp.

2. Implement the decodeText function and test thoroughly.

3. Add a custom test case for the encodeText function.

4. Implement encodeText and test thoroughly.

4 / 9

Some notes on this problem:

• You’re given the input Queue by reference in decodeText, and your code can modify that Queue
however it feels like. The queue can end up empty, or could contain the original bits, or could
contain whatever sequence of 0s and 1s that you’d like.

• In our initial examples of encoding and decoding text in lecture, we had access to an explicit ta-
ble that represented the bit patterns associated with each character. It is significantly easier to im-
plement the encodeText function if you build a table like this before writing out the characters.
However, having a table like that isn’t necessary for the decodeText function – do you see why?

• You can assume that the input tree is not null and doesn’t consist of just a single node. (These are
the two degenerate cases that we said you didn’t need to handle in huffmanTreeFor.)

• The tree given to encodeText and decodeText will always contain leaves holding all the charac-
ters that appear in the input string or input queue of bits (respectively), but may also contain
other characters. The input tree does not necessarily have to be the optimal Huffman coding tree.

• You can assume that the bits provided to decodeText form the correct encoding of a piece of
text that was encoded using the same encoding tree that was provided to you. However, you
should be careful about how you use this assumption. Specifically, if there’s a bug in your en-
codeText, then you may end up passing invalid bits into decodeText – oops! – and so we rec-
ommend making your decodeText function as “bulletproof” as possible by detecting and han-
dling errors as you find them.

• In C++ there is a difference between the numbers 0 and 1 and the characters '0' and '1'. Be
careful not to write something like

Bit zero = '0'; // Error!
Bit one = '1'; // Error!

since this attempts to take the ASCII codes for '0' and '1' (namely, 48 and 49) as values for
bits. Instead, use the numbers themselves:

Bit zero = 0; // Beautiful!
Bit one = 1; // Pulchritudinous!

5 / 9

Milestone Three: Implement Tree Encoding and Decoding
One of the practical concerns of Huffman coding that we discussed in class is that if you do choose to
use Huffman coding, you need to somehow store information about which encoding tree you used. That
way, whoever is decoding the information knows which codes corresponding to which characters. This
means that we’ll need to devise a pair of functions that allow you to take a tree and encode it in a way
that can be stored on disk, plus a way to decode the encoded representation back into the tree.

There are many ways to do this, but one of the most space-efficient ways is the following. We’ll encode
each tree as a pair of a Queue<Bit> representing the shape of the tree and a Queue<char> representing
which characters are in the leaves of the tree. The shape of the tree is encoded as follows:

• If the tree is a single leaf node, it’s represented by the bit 0.

• If the tree is not a leaf node, it’s represented by a 1 bit, followed by the encoding of its zero (left)
subtree, followed by the encoding of its one (right) subtree.

The Queue<char> representing which characters are stored in the leaves of the tree is found by reading
the leaves in the pattern you’d get by doing an inorder traversal of the tree. For example, here are several
Huffman trees and how they’d be represented as a sequence of bits and a sequence of characters:

10100
EWK

 1011000
ADBN

11001100100
ANIVCE

This is an extremely compact way of writing out a tree: the tree itself is written out with one bit per
node, and the contents of the leaves are written out as-is. Most importantly, it’s possible to reverse the
encoding back into a tree. Before writing code to compute or process these sequences, grab a pencil and
paper and make sure you’re comfortable with how these work.

Edit the file res/ShortAnswers.txt with your answers to the following questions.

Q4. Write out the Queue<Bit> and Queue<char> associated with this Huffman tree:

Q5. Decode this Queue<Bit> and Queue<char> into a Huffman tree and draw the result:

111000100
MDCLV

6 / 9

Your task in this part of the assignment is to write a pair of functions

void encodeTree(HuffmanNode* tree, Queue<Bit>& bits, Queue<char>& leaves);
HuffmanNode* decodeTree(Queue<Bit>& bits, Queue<char>& leaves);

This first function takes a tree and produces the two Queues shown above. The second function takes in
the two Queues and reconstructs the tree they represent.

Specifically, you should do the following:

1. Implement the encodeTree and decodeTree functions in Huffman.cpp.

2. Add at least two custom test cases, one for each function, and test your code thoroughly.

Some notes on this problem:

• There are no requirements about what the Queue<Bit> or Queue<char> should contain after
decodeTree finishes running. They could be unchanged, or completely empty, or filled with
whatever contents you’d like.

• You can assume the inputs to decodeTree are correct, in that the bits and characters are a cor-
rect representation of some Huffman tree, that there aren’t stray bits in the queue, that you have
the exact correct number of characters that you need, etc. However, as with encodeText and
decodeText, a bug in your implementation of encodeTree may manifest as errors in decode-
Tree, so we recommend making your decodeTree function “robust” and able to identify and
flag errors if it finds them.

• You can assume the tree provided as input to encodeTree is a valid coding tree – each internal
node will have exactly two children, only the characters in the leaves matter, each character ap-
pears in at most one leaf, etc.

• You can assume the input Queue<Bit> and Queue<char> to encodeTree are empty when that
function is first called.

• You don’t need to worry about the edge cases that came up in the first milestone. You can as-
sume the tree exists and contains at least two leaves.

7 / 9

Milestone Four: Put It All Together
You now have all the pieces you need to build the final Huffman encoder and decoder. Implement the
following pair of functions:

HuffmanResult compress(const string& text);
string decompress(HuffmanResult& file);

This first function takes as input a string of text and produces a HuffmanResult containing all the infor-
mation necessary to store the compressed contents of that string to disk. The second function takes as
input a compressed HuffmanResult and returns the string that it encodes. Here, the HuffmanResult
type represents a combination of the encoded tree and the encoded text:

struct HuffmanResult {
 /* Encoded version of the Huffman tree. */
 Queue<Bit> treeBits;
 Queue<char> treeLeaves;

 /* Encoded version of the message. */
 Queue<Bit> messageBits;
};

This section should mostly consist of putting together the different pieces you wrote earlier in the right
order. In doing so, you may discover that there were some bugs lurking in your implementation, which
you’ll need to then correct to get everything working. (It’s common in software engineering to find that
each individual piece of a program passes its tests independently but fails when things come together;
it’s usually either due to tests not covering every possible case or to some unexpected interactions be-
tween the components). When that happens, use the debugger to isolate where the issue is. Did you build
the encoding tree incorrectly? Did you encode the message bits wrong, or is the issue in the decoder?

To summarize, here’s what you need to do:

1. Implement the compress and decompress functions in Huffman.cpp.

2. Add at least one custom test case to ensure that your code works. Take this step seriously –
writing good tests here will help you identify and smoke out errors that might be lurking in
your code.

Testing is key here! We have not provided enough tests with the starter files to poke and prod these
functions in all the ways they can be poked and prodded, and you should not consider your implementa -
tion to be ready until you’ve written some tests of your own and used the interactive “Compress a File”
and “Decompress a File” options to confirm that your code works end-to-end.

Some notes on this part of the assignment:

• Your implementation should call error() if the input string to compress doesn’t have at least
two distinct characters in it.

• You can assume that the input to decompress() is a valid compressed file and don’t need to
worry about what happens if this isn’t the case. Then again, making this function as robust as
possible is a great idea during testing.

• Our provided starter files contain logic to take a HuffmanResult and save it to disk and to take a
HuffmanResult and load it from disk. The internal logic of how this works is more of a CS107-
level topic that involves manipulating individual bits of variables, which is beyond the scope of
what we’re going to cover in CS106B. However, if you’re curious to see how this works, you’re
welcome to check out Demos/HuffmanResult.cpp to learn more!

• Make sure not to leak any memory in your implementations.

• There are no requirements about what the final contents of the HuffmanResult may be after
calling decompress. You can leave it unchanged, empty it out, etc.

8 / 9

Milestone Five: Enjoy Your Creation!
Congratulations! You’ve just built a compression and decompression algorithm! All that’s left to do now
is to try it out on a few examples to see how well it does.

We’ve bundled a number of sample files with the assignment, some already compressed (they have the
suffix .huff) and some not yet compressed. Use your program to decompress the compressed files to
see what they contain, and then try compressing some of the sample files so that you can see how well
those files compress!

Something specifically that we’d recommend: try decompressing Congratulations.bmp.huff. That
file will expand out to one named Congratulations.bmp, which you should definitely take a look at
once you’ve finished the assignment. 😃

There are no deliverables for this section. Just play around and see what you find!

(Optional) Milestone Six: Extensions!
If you enjoyed this assignment and want to run further with it, we’d love to see what you come up with!
Here are a few suggestions to help you get started.

• Implement a more advanced compression algorithm. Huffman coding is a good compression al-
gorithm, but there are better alternatives in many cases. Many modern compression algorithms
are based on an algorithm called LZW, named after the initials of its inventors. Other topics to
look up include move-to-front coding, run-length encoding, and the Burrows-Wheeler transform.

• Explore some information theory. The field of information theory explores, among other things,
the limits of data compression, and gives ways of measuring how good particular compression
algorithms are. Look up Shannon entropy, KL divergence, and other similar concepts and see if
you can use them to tell us anything interesting about data compression.

Submission Instructions
Once you’ve autoindented your code so that it looks beautiful and worked through the Assignment Sub-
mission Checklist, submit the following files on Paperless, plus any other files you modified when writ-
ing up extensions:

• res/ShortAnswers.txt. (Don’t forget this one, even though there’s no code in it!)

• Huffman.cpp.

And that’s it! You’re done! You know how to work with trees, linked structures, container types, and re-
cursive problem-solving. Congratulations!

Good luck!

9 / 9

	Edit the file res/ShortAnswers.txt with your answer to the following question:
	Q1. Draw the Huffman coding tree that would be produced for the input string "aabbbbccc" by following the algorithm from class. One specific note: when merging trees together, structure your tree so that the first node removed from the priority queue becomes the 0 child of the tree and the second node removed from the priority queue becomes the 1 child of the tree.
	1. Implement the huffmanTreeFor function in Huffman.cpp.
	2. Add at least one custom test case for this function, and test your code thoroughly.
	Edit the file res/ShortAnswers.txt with your answer to the following questions.
	Q2. Decode the string of bits 1100010011000100 using the Huffman tree shown below:
	
	Q3. Encode the string ABRACADABRA using the Huffman tree from Q2.
	1. Add a custom test case for the decodeText function in Huffman.cpp.
	2. Implement the decodeText function and test thoroughly.
	3. Add a custom test case for the encodeText function.
	4. Implement encodeText and test thoroughly.
	Edit the file res/ShortAnswers.txt with your answers to the following questions.
	Q4. Write out the Queue<Bit> and Queue<char> associated with this Huffman tree:
	
	Q5. Decode this Queue<Bit> and Queue<char> into a Huffman tree and draw the result:
	111000100 MDCLV
	1. Implement the encodeTree and decodeTree functions in Huffman.cpp.
	2. Add at least two custom test cases, one for each function, and test your code thoroughly.
	1. Implement the compress and decompress functions in Huffman.cpp.
	2. Add at least one custom test case to ensure that your code works. Take this step seriously – writing good tests here will help you identify and smoke out errors that might be lurking in your code.
	There are no deliverables for this section. Just play around and see what you find!

